Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



1.2 Substitution


43


k+1. Dann ist [θ*k, ξk, [<θ*0, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ = [<θ*o, ., θ*k>,
<ξo, ..., ξk>, θ]. Angenommen ξi = θ fur ein i k. Dann ist ξj θ fur alle i j k+1. Dann
ist [
<θ*o, ., θ*k>, <ξo, ., ξk>, θ] = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*0, ., θ*i>, <ξo, .,
ξ
i>, θ] = θ*i GTERM. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ*i] =
θ*
i = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ]. Angenommen ξk =
θ. Dann ist
ξiι θ fur alle i k und [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = θ. Also [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ*k = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Gelte die Behauptung nun fur {θo, ., θr-1} TERM und sei θ = rφ(θo, ., θr-1)π
FTERM. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, rφ(θo, ., θr-1)π ]] = rφ([θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θo]], ., [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θr-1]])π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
θ
i]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θi] fur alle i r. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, .,
ξ
k-1>, θ]] = rφ([<θ*o, ., θ*k>, <ξo, ., ξk>, θo], ., [<θ*o, ., θ*k>, <ξo, ., ξk>, θr-1])π = [<θ*o,
., θ*
k>, <ξo, ., ξk>, rφ(θo, ., θr-1)π ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θo, . θr-1)^l AFORM. Der Fall verlauft analog zum FTERM-Fall
unter Verwendung von (i).

Gelte das Theorem nun fur Δo, Δ1 FORM. Sei Δ = rΔo^l JFORM. Dann ist [θ*k,
ξ
k, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, ' Δ ]] =
r-[θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Mb Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
Δ]] =
r-[<θ*o, ., θ*k>, <ξo, ., ξk>, ΔI = [<θ*o, ., θ*k>, <ξo, ., ξk>, ' Δ I = [<θ*o, .,
θ*
k>, <ξo, ., ξk>, Δ]. Sei Δ = ro ψ Δ1)^l JFORM. Der Fall verlauft analog zum Nega-
torfall.

Sei Δ = rΠζΔo^l QFORM. Angenommen ξi = ζ fur ein i k. Dann ist ξj ≠ ζ fur alle j <
k+1 mit i j. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1,
ξ
i+1, ., ξk-1>, Δo]π] = rΠζ[θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, .,
ξ
k-1>, Δo]]π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, ., ξk-1>,
Δ
o]] = [<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, Δ]] = rΠζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, M =
[
<θ*o, ., θ*k>, <ξo, ., ξk>, r∏ζΔoπ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. Angenommen ξk = ζ.
Dann ist ξ
i ≠ ζ fur alle i k und [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o,



More intriguing information

1. The Triangular Relationship between the Commission, NRAs and National Courts Revisited
2. Nonlinear Production, Abatement, Pollution and Materials Balance Reconsidered
3. Investment and Interest Rate Policy in the Open Economy
4. The resources and strategies that 10-11 year old boys use to construct masculinities in the school setting
5. Income Taxation when Markets are Incomplete
6. The name is absent
7. The name is absent
8. The name is absent
9. Industrial districts, innovation and I-district effect: territory or industrial specialization?
10. The name is absent