1.2 Substitution
43
k+1. Dann ist [θ*k, ξk, [<θ*0, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ = [<θ*o, ., θ*k>,
<ξo, ..., ξk>, θ]. Angenommen ξi = θ fur ein i < k. Dann ist ξj ≠ θ fur alle i < j < k+1. Dann
ist [<θ*o, ., θ*k>, <ξo, ., ξk>, θ] = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*0, ., θ*i>, <ξo, .,
ξi>, θ] = θ*i ∈ GTERM. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ*i] =
θ*i = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ]. Angenommen ξk =
θ. Dann ist ξiι ≠ θ fur alle i < k und [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = θ. Also [θ*k, ξk,
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ*k = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].
Gelte die Behauptung nun fur {θo, ., θr-1} ⊆ TERM und sei θ = rφ(θo, ., θr-1)π ∈
FTERM. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξk-1>, rφ(θo, ., θr-1)π ]] = rφ([θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θo]], ., [θ*k, ξk,
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θr-1]])π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
θi]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θi] fur alle i < r. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, .,
ξk-1>, θ]] = rφ([<θ*o, ., θ*k>, <ξo, ., ξk>, θo], ., [<θ*o, ., θ*k>, <ξo, ., ξk>, θr-1])π = [<θ*o,
., θ*k>, <ξo, ., ξk>, rφ(θo, ., θr-1)π ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].
Zu (ii): Sei Δ ∈ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ = rΦ(θo, . θr-1)^l ∈ AFORM. Der Fall verlauft analog zum FTERM-Fall
unter Verwendung von (i).
Gelte das Theorem nun fur Δo, Δ1 ∈ FORM. Sei Δ = r— Δo^l ∈ JFORM. Dann ist [θ*k,
ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, ' Δ ]] =
r-[θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Mb Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξk-1>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
Δ]] = r-[<θ*o, ., θ*k>, <ξo, ., ξk>, ΔI = [<θ*o, ., θ*k>, <ξo, ., ξk>, ' Δ I = [<θ*o, .,
θ*k>, <ξo, ., ξk>, Δ]. Sei Δ = r(Δo ψ Δ1)^l ∈ JFORM. Der Fall verlauft analog zum Nega-
torfall.
Sei Δ = rΠζΔo^l ∈ QFORM. Angenommen ξi = ζ fur ein i < k. Dann ist ξj ≠ ζ fur alle j <
k+1 mit i ≠ j. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, .,
θ*k-1>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1,
ξi+1, ., ξk-1>, Δo]π] = rΠζ[θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, .,
ξk-1>, Δo]]π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, ., ξk-1>,
Δo]] = [<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*k-1>, <ξo, ., ξk-1>, Δ]] = rΠζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, M =
[<θ*o, ., θ*k>, <ξo, ., ξk>, r∏ζΔoπ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. Angenommen ξk = ζ.
Dann ist ξi ≠ ζ fur alle i < k und [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o,