Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



1.2 Substitution


43


k+1. Dann ist [θ*k, ξk, [<θ*0, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ = [<θ*o, ., θ*k>,
<ξo, ..., ξk>, θ]. Angenommen ξi = θ fur ein i k. Dann ist ξj θ fur alle i j k+1. Dann
ist [
<θ*o, ., θ*k>, <ξo, ., ξk>, θ] = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*0, ., θ*i>, <ξo, .,
ξ
i>, θ] = θ*i GTERM. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ*i] =
θ*
i = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ]. Angenommen ξk =
θ. Dann ist
ξiι θ fur alle i k und [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = θ. Also [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ*k = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Gelte die Behauptung nun fur {θo, ., θr-1} TERM und sei θ = rφ(θo, ., θr-1)π
FTERM. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, rφ(θo, ., θr-1)π ]] = rφ([θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θo]], ., [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θr-1]])π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
θ
i]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θi] fur alle i r. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, .,
ξ
k-1>, θ]] = rφ([<θ*o, ., θ*k>, <ξo, ., ξk>, θo], ., [<θ*o, ., θ*k>, <ξo, ., ξk>, θr-1])π = [<θ*o,
., θ*
k>, <ξo, ., ξk>, rφ(θo, ., θr-1)π ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θo, . θr-1)^l AFORM. Der Fall verlauft analog zum FTERM-Fall
unter Verwendung von (i).

Gelte das Theorem nun fur Δo, Δ1 FORM. Sei Δ = rΔo^l JFORM. Dann ist [θ*k,
ξ
k, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, ' Δ ]] =
r-[θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Mb Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
Δ]] =
r-[<θ*o, ., θ*k>, <ξo, ., ξk>, ΔI = [<θ*o, ., θ*k>, <ξo, ., ξk>, ' Δ I = [<θ*o, .,
θ*
k>, <ξo, ., ξk>, Δ]. Sei Δ = ro ψ Δ1)^l JFORM. Der Fall verlauft analog zum Nega-
torfall.

Sei Δ = rΠζΔo^l QFORM. Angenommen ξi = ζ fur ein i k. Dann ist ξj ≠ ζ fur alle j <
k+1 mit i j. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1,
ξ
i+1, ., ξk-1>, Δo]π] = rΠζ[θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, .,
ξ
k-1>, Δo]]π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, ., ξk-1>,
Δ
o]] = [<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, Δ]] = rΠζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, M =
[
<θ*o, ., θ*k>, <ξo, ., ξk>, r∏ζΔoπ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. Angenommen ξk = ζ.
Dann ist ξ
i ≠ ζ fur alle i k und [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o,



More intriguing information

1. Income Mobility of Owners of Small Businesses when Boundaries between Occupations are Vague
2. Computational Batik Motif Generation Innovation of Traditi onal Heritage by Fracta l Computation
3. The name is absent
4. Towards a Strategy for Improving Agricultural Inputs Markets in Africa
5. THE WAEA -- WHICH NICHE IN THE PROFESSION?
6. The ultimate determinants of central bank independence
7. Testing Gribat´s Law Across Regions. Evidence from Spain.
8. The name is absent
9. Gender and aquaculture: sharing the benefits equitably
10. Investment and Interest Rate Policy in the Open Economy
11. BODY LANGUAGE IS OF PARTICULAR IMPORTANCE IN LARGE GROUPS
12. Auction Design without Commitment
13. Cryothermal Energy Ablation Of Cardiac Arrhythmias 2005: State Of The Art
14. Cardiac Arrhythmia and Geomagnetic Activity
15. An Investigation of transience upon mothers of primary-aged children and their school
16. TINKERING WITH VALUATION ESTIMATES: IS THERE A FUTURE FOR WILLINGNESS TO ACCEPT MEASURES?
17. Effort and Performance in Public-Policy Contests
18. Government spending composition, technical change and wage inequality
19. The name is absent
20. The name is absent