Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



1.2 Substitution


43


k+1. Dann ist [θ*k, ξk, [<θ*0, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ = [<θ*o, ., θ*k>,
<ξo, ..., ξk>, θ]. Angenommen ξi = θ fur ein i k. Dann ist ξj θ fur alle i j k+1. Dann
ist [
<θ*o, ., θ*k>, <ξo, ., ξk>, θ] = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*0, ., θ*i>, <ξo, .,
ξ
i>, θ] = θ*i GTERM. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ*i] =
θ*
i = [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ]. Angenommen ξk =
θ. Dann ist
ξiι θ fur alle i k und [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ] = θ. Also [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, θ] = θ*k = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Gelte die Behauptung nun fur {θo, ., θr-1} TERM und sei θ = rφ(θo, ., θr-1)π
FTERM. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, rφ(θo, ., θr-1)π ]] = rφ([θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θo]], ., [θ*k, ξk,
[
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θr-1]])π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
θ
i]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θi] fur alle i r. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, .,
ξ
k-1>, θ]] = rφ([<θ*o, ., θ*k>, <ξo, ., ξk>, θo], ., [<θ*o, ., θ*k>, <ξo, ., ξk>, θr-1])π = [<θ*o,
., θ*
k>, <ξo, ., ξk>, rφ(θo, ., θr-1)π ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, θ].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θo, . θr-1)^l AFORM. Der Fall verlauft analog zum FTERM-Fall
unter Verwendung von (i).

Gelte das Theorem nun fur Δo, Δ1 FORM. Sei Δ = rΔo^l JFORM. Dann ist [θ*k,
ξ
k, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, ' Δ ]] =
r-[θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Mb Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo,
., ξ
k-1>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>,
Δ]] =
r-[<θ*o, ., θ*k>, <ξo, ., ξk>, ΔI = [<θ*o, ., θ*k>, <ξo, ., ξk>, ' Δ I = [<θ*o, .,
θ*
k>, <ξo, ., ξk>, Δ]. Sei Δ = ro ψ Δ1)^l JFORM. Der Fall verlauft analog zum Nega-
torfall.

Sei Δ = rΠζΔo^l QFORM. Angenommen ξi = ζ fur ein i k. Dann ist ξj ≠ ζ fur alle j <
k+1 mit i j. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1,
ξ
i+1, ., ξk-1>, Δo]π] = rΠζ[θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, .,
ξ
k-1>, Δo]]π. Mit I.V. gilt [θ*k, ξk, [<θ*o, ., θ*i-1, θ*i+1, ., θ*k-1>, <ξo, ., ξi-1, ξi+1, ., ξk-1>,
Δ
o]] = [<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, Δ]] = rΠζ[<θ*o, ., θ*i-1, θ*i+1, ., θ*k>, <ξo, ., ξi-1, ξi+1, ., ξk>, M =
[
<θ*o, ., θ*k>, <ξo, ., ξk>, r∏ζΔoπ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. Angenommen ξk = ζ.
Dann ist ξ
i ≠ ζ fur alle i k und [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, Δ]] = [θ*k, ξk, [<θ*o,



More intriguing information

1. A Computational Model of Children's Semantic Memory
2. Neural Network Modelling of Constrained Spatial Interaction Flows
3. DETERMINANTS OF FOOD AWAY FROM HOME AMONG AFRICAN-AMERICANS
4. IMPROVING THE UNIVERSITY'S PERFORMANCE IN PUBLIC POLICY EDUCATION
5. Public Debt Management in Brazil
6. A multistate demographic model for firms in the province of Gelderland
7. DIVERSITY OF RURAL PLACES - TEXAS
8. The name is absent
9. Connectionism, Analogicity and Mental Content
10. The name is absent