Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



42    1 Zum grammatischen Rahmen

Gelte die Behauptung nun fur {θ0, ., θr-1} TERM und sei θ = rφ(θ0, ., θr-1)π
FTERM. Dann ist [β*fc, βfc, [<β*o, ., β*k>, <βo, ., βk>, θ]] = [β*k, βk, [<β*o, ., β*k>,
<βo, ., βfc4>, rφ(θo, ., θ -I Il = rφ([β*, βk, [<β*o, ., β*fc>, (βo, ., βfc>, θo]], ., [β*fc,
β
k, [<β*o, ., β*fc>, (βo, ., βfc>, θ ) . Mit I.V. gilt [β*k, βk, [(β*o, ., β*k), (βo, .,
β
k>, θi]] = [<β*o, ., β*k>, <βo, ., βk>, θi] fur alle ir. Also [β*k, βk, [<β*o, ., β*k>, <βo,
., β
fc>, θ]] = rφ([(β*o, ., β*fc>, (βo, ., βfc>, θo], ., [<β*o, ., β*fc>, (βo, ., βfc>, θ -]) =
[
<β*o, ., β*k>, (βo, ., βk>, rφ(θo, ., θ -) ] = [<β*o, ., β*fc>, (βo, ., βfc>, θ].

Zu (ii): Der Beweis wird mittels Induktion uber den Formelaufbau von Δ gefuhrt. Sei Δ
=
rΦ(θo, . θr-1)^l AFORM. Der Fall verlauft analog zum FTERM-Fall unter Verwen-
dung von (i).

Gelte die Behauptung nun fur Δo, Δ1 FORM und sei Δ = rΔo^l JFORM. Dann ist
[β*
k, βk, [(β*o, ., β*fc-1>, (βo, ., βfc-1>, Δ]] = [β*k, βk, [<β*o, ., β*k-1>, (βo, ., βk-1>,
Γ-Δ] = ■-[β*k, βk, [<β*0, ., β*k), (βo, ., βk), Δo]Γ. Mit I.V. gilt [β*k, βk, [<β*o, .,
β*
k>, (βo, ., βk), Δo]] = [(β*o, ., β*k>, (βo, ., βk>, Δo]. Also [β*k, βk, [(β*o, ., β*k),
(βo, ., βfc-1>, Δ]] = r-[(β*o, ., β*fc>, (βo, ., βfc>, Δ ] = [<β*o, ., β*fc>, (βo, ., βfc>,
Δ ] = [<β*o, ., β*fc>, (βo, ., βfc>, Δ]. Sei Δ = ro ψ Δl)' JFORM. Der Fall verlauft
analog zum Negatorfall. Sei Δ =
rΠξΔo^l QFORM. Der Fall verlauft analog zum Nega-
torfall.

Zu (iii) und (iv): (iii) ergibt sich analog zum Negatorfall unter Verwendung von (ii). (iv)
ergibt sich analog zum FTERM-Fall unter Verwendung von (iii). ■

Hinweis: Ein zu Theorem --27 analoges Theorem lasst sich fur Formelmengen zeigen.

Theorem 1-28. Mehrfache Substitution von geschlossenen Termen fur paarweise verschiedene
Variablen in Termen und Formeln (a)

Wenn k N{o}, {θ*o, ., θ*k} GTERM und {ξo, ., ξk} VAR, wobei ξi ≠ ξj∙ fur alle i, j
< k+1 mit ij, dann:

(i) Wenn θ TERM, dann

[θ*k, ξk, [(θ*o, ., θ*k>, (ξo, ., ξk>, θ]] = [(θ*o, ., θ*k), (ξo, ., ξk>, θ], und

(ii) Wenn Δ FORM, dann

[θ*k, ξk, [(θ*o, ., θ*k-1>, (ξo, ., ξk-1>, Δ]] = [(θ*o, ., θ*k>, (ξo, ., ξk>, Δ].

Beweis: Seien k N\{o}, {θ*o, ., θ*k} GTERM und {ξo, ., ξk} VAR, wobei ξi
ξ
j fur alle i, j k+1 mit i j. Zu (i): Sei θ TERM. Der Beweis wird mittels Induktion
uber den Termaufbau von θ gefuhrt. Sei θ
ATERM. Angenommen ξi ≠ θ fur alle i <



More intriguing information

1. The name is absent
2. Structure and objectives of Austria's foreign direct investment in the four adjacent Central and Eastern European countries Hungary, the Czech Republic, Slovenia and Slovakia
3. Campanile Orchestra
4. Apprenticeships in the UK: from the industrial-relation via market-led and social inclusion models
5. Innovation Policy and the Economy, Volume 11
6. Økonomisk teorihistorie - Overflødig information eller brugbar ballast?
7. TOWARDS THE ZERO ACCIDENT GOAL: ASSISTING THE FIRST OFFICER MONITOR AND CHALLENGE CAPTAIN ERRORS
8. For Whom is MAI? A theoretical Perspective on Multilateral Agreements on Investments
9. The name is absent
10. Großhandel: Steigende Umsätze und schwungvolle Investitionsdynamik
11. Effects of a Sport Education Intervention on Students’ Motivational Responses in Physical Education
12. The bank lending channel of monetary policy: identification and estimation using Portuguese micro bank data
13. DURABLE CONSUMPTION AS A STATUS GOOD: A STUDY OF NEOCLASSICAL CASES
14. Human Development and Regional Disparities in Iran:A Policy Model
15. The name is absent
16. Demand Potential for Goat Meat in Southern States: Empirical Evidence from a Multi-State Goat Meat Consumer Survey
17. Managing Human Resources in Higher Education: The Implications of a Diversifying Workforce
18. A Rare Presentation of Crohn's Disease
19. FASTER TRAINING IN NONLINEAR ICA USING MISEP
20. Models of Cognition: Neurological possibility does not indicate neurological plausibility.