Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



1.2 Substitution


39


Sei Δ = rΠξΔoπ QFORM. Angenommen ξ = θ+. Dann ist [θ*, θ+, Δ] = [θ*, θ+,
'HξΔ I = rΠξΔoπ = [β, θ+, rΠξΔoπ] = [β, θ+, Δ]. Dann ist β TT([β, θ+, Δ]) = TT(Δ).
Also [θ*, θ+, Δ] = [β, θ+, Δ] = [θ*, β, [β, θ+, Δ]]. Angenommen ξ
θ+. Der Fall verlauft
analog zum Negatorfall.

Zu (iii): Der Fall verlauft analog zum Negatorfall. ■

Theorem 1-25. Eine hinreichende Bedingung fur die Kommutativitat einer Substitution in
Termen und Formeln

Wenn θ*o, θ*ι GTERM, θo, θι ATERM, θo ≠ θɪ, θɪ TT(θ*o) und θo TT(θ*ι), dann:
(i) Wenn θ+
TERM, dann [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]], und
(ii) Wenn Δ
FORM, dann [θ*ι, θ1, [θ*o, θo, Δ]] = [θ*o, θo, [θ*ι, θι, Δ]].

Beweis: Seien θ*o, θ*1 GTERM, θo, θ1 ATERM, θo ≠ θ1, θ1 TT(θ*o) und θo
TT(θ*1). Zu (i): Sei θ+ TERM. Der Beweis wird mittels Induktion uber den Termaufbau
von θ+ gefuhrt. Sei θ+
ATERM. Angenommen θ+ = θo. Dann ist θ+ ≠ θ1 und [θ*1, θ1,
[θ*
o, θo, θ+]] = [θ*1, θ1, θ*o]. Weil θ1 TT(θ*o) gilt [θ*1, θ1, θ*o] = θ*o. Andererseits ist
[θ*
o, θo, [θ*1, θ1, θ+]] = [θ*o, θo, θ+] = θ*o. Also [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1,
θ+]]. Sei nun θ+ ≠ θ
o. Angenommen θ+ = θ1. Dann ist [θ*1, θ1, [θ*o, θo, θ+]] = [θ*1, θ1, θ+]
= θ*
1. Weil θo TT(θ*1) gilt [θ*o, θo, θ*1] = θ*1. Damit ist [θ*o, θo, [θ*1, θ1, θ+]] = [θ*o,
θ
o, θ*1] = θ*1. Also [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]]. Angenommen θ+ ≠ θ1.
Dann ist [θ*
1, θ1, [θ*o, θo, θ+]] = [θ*1, θ1, θ+] = θ+ und [θ*o, θo, [θ*1, θ1, θ+]] = [θ*o, θo, θ+]
= θ+. Also auch [θ*
1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]].

Gelte die Behauptung fur {θ'o, ..., θ'r-1} TERM und sei θ+ = rφ(θ'o, ..., θ'r-1)^l
FTERM. Dann ist [θ*ι, θ1, [θ*o, θo, θ+]] = [θ*ι, θι, [θ*o, θo, rφ(θ'o, ., θ'r)π]] = rφ([θ*ι,
θ
ι, [θ*o, θo, θ'o]], ., [θ*ι, θι, [θ*o, θo, θ'r]])π. Mit I.V. gilt [θ*1, θι, [θ*o, θo, θ'i]] = [θ*o,
θ
o, [θ*ι, θι, θ'i]] fur alle ir. Also [θ*ι, θι, [θ*o, θo, θ+]] = rφ([θ*o, θo, [θ*ι, θι, θ'o]], .,
[θ*
o, θo, [θ*ι, θι, θ'r]])π = [θ*o, θo, [θ*ι, θι, rφ(θ'o, . θ¼)π]] = [θ*o, θo, [θ*ι, θι, θ+]].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θ'o, . θ'r)π AFORM. Dann ist [θ*ι, θι, [θ*o, θo, Δ]] = [θ*ι, θι,
[θ*
o, θo, rΦ(θ'o, ., θ'r-1)π ]] = rΦ([θ*ι, θι, [θ*o, θo, θ'o]], ., [θ*1, θι, [θ*o, θo, θ'r-1]])π. Mit
(i) gilt [θ*
1, θ1, [θ*o, θo, θ'i]] = [θ*o, θo, [θ*1, θ1, θ'i]] fur alle i r. Also [θ*1, θ1, [θ*o, θo,
Δ]] =
rΦ([θ*o, θo, [θ*ι, θι, θ'o]], ., [θ*o, θo, [θ*ι, θι, θ'r-1]])π = [θ*o, θo, [θ*ι, θι, rΦ(θ'o,
. θ'
r-1)π ]] = [θ*o, θo, [θ*ι, θι, Δ]].



More intriguing information

1. The Importance of Global Shocks for National Policymakers: Rising Challenges for Central Banks
2. Menarchial Age of Secondary School Girls in Urban and Rural Areas of Rivers State, Nigeria
3. Foreign Direct Investment and the Single Market
4. EMU: some unanswered questions
5. Mortality study of 18 000 patients treated with omeprazole
6. Credit Markets and the Propagation of Monetary Policy Shocks
7. Feeling Good about Giving: The Benefits (and Costs) of Self-Interested Charitable Behavior
8. The name is absent
9. Cultural Neuroeconomics of Intertemporal Choice
10. Imputing Dairy Producers' Quota Discount Rate Using the Individual Export Milk Program in Quebec