Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



1.2 Substitution


39


Sei Δ = rΠξΔoπ QFORM. Angenommen ξ = θ+. Dann ist [θ*, θ+, Δ] = [θ*, θ+,
'HξΔ I = rΠξΔoπ = [β, θ+, rΠξΔoπ] = [β, θ+, Δ]. Dann ist β TT([β, θ+, Δ]) = TT(Δ).
Also [θ*, θ+, Δ] = [β, θ+, Δ] = [θ*, β, [β, θ+, Δ]]. Angenommen ξ
θ+. Der Fall verlauft
analog zum Negatorfall.

Zu (iii): Der Fall verlauft analog zum Negatorfall. ■

Theorem 1-25. Eine hinreichende Bedingung fur die Kommutativitat einer Substitution in
Termen und Formeln

Wenn θ*o, θ*ι GTERM, θo, θι ATERM, θo ≠ θɪ, θɪ TT(θ*o) und θo TT(θ*ι), dann:
(i) Wenn θ+
TERM, dann [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]], und
(ii) Wenn Δ
FORM, dann [θ*ι, θ1, [θ*o, θo, Δ]] = [θ*o, θo, [θ*ι, θι, Δ]].

Beweis: Seien θ*o, θ*1 GTERM, θo, θ1 ATERM, θo ≠ θ1, θ1 TT(θ*o) und θo
TT(θ*1). Zu (i): Sei θ+ TERM. Der Beweis wird mittels Induktion uber den Termaufbau
von θ+ gefuhrt. Sei θ+
ATERM. Angenommen θ+ = θo. Dann ist θ+ ≠ θ1 und [θ*1, θ1,
[θ*
o, θo, θ+]] = [θ*1, θ1, θ*o]. Weil θ1 TT(θ*o) gilt [θ*1, θ1, θ*o] = θ*o. Andererseits ist
[θ*
o, θo, [θ*1, θ1, θ+]] = [θ*o, θo, θ+] = θ*o. Also [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1,
θ+]]. Sei nun θ+ ≠ θ
o. Angenommen θ+ = θ1. Dann ist [θ*1, θ1, [θ*o, θo, θ+]] = [θ*1, θ1, θ+]
= θ*
1. Weil θo TT(θ*1) gilt [θ*o, θo, θ*1] = θ*1. Damit ist [θ*o, θo, [θ*1, θ1, θ+]] = [θ*o,
θ
o, θ*1] = θ*1. Also [θ*1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]]. Angenommen θ+ ≠ θ1.
Dann ist [θ*
1, θ1, [θ*o, θo, θ+]] = [θ*1, θ1, θ+] = θ+ und [θ*o, θo, [θ*1, θ1, θ+]] = [θ*o, θo, θ+]
= θ+. Also auch [θ*
1, θ1, [θ*o, θo, θ+]] = [θ*o, θo, [θ*1, θ1, θ+]].

Gelte die Behauptung fur {θ'o, ..., θ'r-1} TERM und sei θ+ = rφ(θ'o, ..., θ'r-1)^l
FTERM. Dann ist [θ*ι, θ1, [θ*o, θo, θ+]] = [θ*ι, θι, [θ*o, θo, rφ(θ'o, ., θ'r)π]] = rφ([θ*ι,
θ
ι, [θ*o, θo, θ'o]], ., [θ*ι, θι, [θ*o, θo, θ'r]])π. Mit I.V. gilt [θ*1, θι, [θ*o, θo, θ'i]] = [θ*o,
θ
o, [θ*ι, θι, θ'i]] fur alle ir. Also [θ*ι, θι, [θ*o, θo, θ+]] = rφ([θ*o, θo, [θ*ι, θι, θ'o]], .,
[θ*
o, θo, [θ*ι, θι, θ'r]])π = [θ*o, θo, [θ*ι, θι, rφ(θ'o, . θ¼)π]] = [θ*o, θo, [θ*ι, θι, θ+]].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θ'o, . θ'r)π AFORM. Dann ist [θ*ι, θι, [θ*o, θo, Δ]] = [θ*ι, θι,
[θ*
o, θo, rΦ(θ'o, ., θ'r-1)π ]] = rΦ([θ*ι, θι, [θ*o, θo, θ'o]], ., [θ*1, θι, [θ*o, θo, θ'r-1]])π. Mit
(i) gilt [θ*
1, θ1, [θ*o, θo, θ'i]] = [θ*o, θo, [θ*1, θ1, θ'i]] fur alle i r. Also [θ*1, θ1, [θ*o, θo,
Δ]] =
rΦ([θ*o, θo, [θ*ι, θι, θ'o]], ., [θ*o, θo, [θ*ι, θι, θ'r-1]])π = [θ*o, θo, [θ*ι, θι, rΦ(θ'o,
. θ'
r-1)π ]] = [θ*o, θo, [θ*ι, θι, Δ]].



More intriguing information

1. The name is absent
2. Federal Tax-Transfer Policy and Intergovernmental Pre-Commitment
3. Economie de l’entrepreneur faits et théories (The economics of entrepreneur facts and theories)
4. Insurance within the firm
5. The name is absent
6. Natural hazard mitigation in Southern California
7. LABOR POLICY AND THE OVER-ALL ECONOMY
8. The Composition of Government Spending and the Real Exchange Rate
9. Quality practices, priorities and performance: an international study
10. ‘Goodwill is not enough’
11. REVITALIZING FAMILY FARM AGRICULTURE
12. The name is absent
13. Foreign direct investment in the Indian telecommunications sector
14. Nurses' retention and hospital characteristics in New South Wales, CHERE Discussion Paper No 52
15. Unemployment in an Interdependent World
16. Empirical Calibration of a Least-Cost Conservation Reserve Program
17. The open method of co-ordination: Some remarks regarding old-age security within an enlarged European Union
18. Graphical Data Representation in Bankruptcy Analysis
19. ANTI-COMPETITIVE FINANCIAL CONTRACTING: THE DESIGN OF FINANCIAL CLAIMS.
20. Firm Creation, Firm Evolution and Clusters in Chile’s Dynamic Wine Sector: Evidence from the Colchagua and Casablanca Regions