Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



40    1 Zum grammatischen Rahmen

Gelte die Behauptung fur Δ0, Δ1 FORM und sei Δ = r-Δ,√ JFORM. Dann ist [θ*1,
Θ
1, [θ*0, θ0, Δ]] = [θ*1, θ1, [θ*0, θ0, r- Δ ]] = r-[θ*1, θ1, [θ*0, θ0, Δo]]π . Mit I.V. gilt [θ*b
Θ
1, [θ*o, θo, Δo]] = [θ*o, θo, [θ*1, θ1, Δo]]. Also [θ*1, θb [θ*o, θ0, Δ]] = r-[θ*o, θ0, [θ*b θb
Δ Il = [θ*
o, θo, [θ*1, θ1, ' Δ ]] = [θ*o, θo, [θ*1, θ1, Δ]]. Sei Δ = γo ψ Δ) JFORM.
Der Fall verlauft analog zum Negatorfall.

Sei Δ = rΠξΔ0^l QFORM. Angenommen ξ = θ0. Dann ist ξ ≠ θɪ und [θ*ι, θ1, [θ*0, θ0,
Δ]] = [θ*
1, θ1, [θ*o, θo, r∏ξΔoπ]] = [θ*1, θ1, r∏ξΔoπ] = rΠξ[θ*1, θ1, ΔoΓ = [θ*o, θo,
rΠξ[θ*b θ1, Δo]T] = [θ*o, θo, [θ*1, θ1, FξΔ Ц = [θ*o, θo, [θ*1, θɪ, Δ]]. Angenommen ξ =
θ
1. Dann ist ξ ≠ θo und [θ*b θɪ, [θ*o, θo, Δ]] = [θ*1, θɪ, [θ*o, θo, r∏ξΔoπ]] = [θ*1, θɪ,
rΠξ[θ*0, θo, Δo]π] = rΠξ[θ*0, θo, Δ ] = [θ*0, θo, r∏ξΔoπ] = [θ*0, θo, [θ*1, θ1, r∏ξΔoπ]] =
[θ*
o, θo, [θ*1, θ1, Δ]]. Sei θo ξ ≠ θ1. Der Fall verlauft analog zum Negatorfall. ■

Theorem 1-26. Substitution in Substitutionsergebnissen

Wenn ζ VAR, θ', θ* GTERM und θ+ KONST PAR, dann:

(i) Wenn θ TERM, dann [θ', θ+, [θ*, ζ, θ]] = [[θ', θ+, θ*], ζ, [θ', θ+, θ]], und

(ii) Wenn Δ FORM, dann [θ', θ+, [θ*, ζ, Δ]] = [[θ', θ+, θ*], ζ, [θ', θ+, Δ]].

Beweis: Seien ζ VAR, θ', θ* GTERM und θ+ KONST PAR. Zu (i): Sei θ
TERM. Der Beweis wird mittels Induktion uber den Termaufbau von θ gefuhrt. Sei θ
ATERM. Sei weiter θ KONST PAR. Angenommen θ = θ+. Dann ist [θ', θ+, [θ*, ζ,
θ]] = [θ', θ+, θ] = θ'. Nun ist ζ
TT(θ') GTERM und daher [θ', θ+, [θ*, ζ, θ]] = θ' = [[θ',
θ+, θ*], ζ, θ'] = [[θ', θ+, θ*], ζ, [θ', θ+, θ]]. Angenommen θ
θ+. Dann ist [θ', θ+, [θ*, ζ, θ]]
= [θ', θ+, θ] = θ = [[θ', θ+, θ*], ζ, θ] = [[θ', θ+, θ*], ζ, [θ', θ+, θ]]. Sei schlieβlich θ
VAR.
Angenommen θ = ζ. Dann ist [θ', θ+, [θ*, ζ, θ]] = [θ', θ+, θ*] = [[θ', θ+, θ*], ζ, θ] = [[θ', θ+,
θ*], ζ, [θ', θ+, θ]]. Angenommen θ
ζ. Dann ist [θ', θ+, [θ*, ζ, θ]] = [θ', θ+, θ] = θ = [[θ',
θ+, θ*], ζ, θ] = [[θ', θ+, θ*], ζ, [θ', θ+, θ]].

Gelte die Behauptung nun fur {θ0, ., θr-1} TERM und sei θ = rφ(θ0, ., θr-ι)^l
FTERM. Dann ist [θ', θ+, [θ*, ζ, θ]] = [θ', θ+, [θ*, ζ, rφ(θo, ., θr-1)π]] = rφ([θ', θ+, [θ*, ζ,
θ
o]], ., [θ', θ+, [θ*, ζ, θr-1]])T Mit I.V. gilt [θ', θ+, [θ*, ζ, θi]] = [[θ', θ+, θ*], ζ, [θ', θ+, θi]]
fur alle
ir. Also [θ', θ+, [θ*, ζ, θ]] = rφ([[θ', θ+, θ*], ζ, [θ', θ+, θɑ]], ., [[θ', θ+, θ*], ζ, [θ',
θ+, θ
r-1]]Γ = [[θ', θ+, θ*], ζ, [θ', θ+, rφ(θo, ., θr-ʃ]] = [[θ', θ+, θ*], ζ, [θ', θ+, θ]].

Zu (ii): Sei Δ FORM. Der Beweis wird mittels Induktion uber den Formelaufbau von
Δ gefuhrt. Sei Δ =
rΦ(θ0, . θr-ι)^lAFORM. Der Fall verlauft analog zum FTERM-Fall
unter Verwendung von (i).



More intriguing information

1. Firm Creation, Firm Evolution and Clusters in Chile’s Dynamic Wine Sector: Evidence from the Colchagua and Casablanca Regions
2. Pupils’ attitudes towards art teaching in primary school: an evaluation tool
3. Regulation of the Electricity Industry in Bolivia: Its Impact on Access to the Poor, Prices and Quality
4. The name is absent
5. The name is absent
6. Skills, Partnerships and Tenancy in Sri Lankan Rice Farms
7. Existentialism: a Philosophy of Hope or Despair?
8. Heavy Hero or Digital Dummy: multimodal player-avatar relations in FINAL FANTASY 7
9. Should Local Public Employment Services be Merged with the Local Social Benefit Administrations?
10. The name is absent
11. The name is absent
12. Surveying the welfare state: challenges, policy development and causes of resilience
13. The name is absent
14. The name is absent
15. fMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences
16. Trade and Empire, 1700-1870
17. The Impact of Minimum Wages on Wage Inequality and Employment in the Formal and Informal Sector in Costa Rica
18. The name is absent
19. Evolution of cognitive function via redeployment of brain areas
20. The name is absent