Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



38    1 Zum grammatischen Rahmen

dass Δ'o = [β, ξ, Δo] und damit Δ+ = rΠξ'Δ'oπ = r∏ξ'[β, ξ, Δ0Γ = [β, ξ, r∏ξ'Δoπ ] = [β, ξ,
Δ]. ■

Theorem 1-24. Kurzung von Parametern bei der Substitution

Wenn θ TERM, Δ FORM, Σ SATZ, θ* GTERM, β PAR(TT(θ) TT(Δ)
TT(Σ)) und θ+ ATERM, dann:

(i) [θ*, θ+, θ] = [θ*, β, [β, θ+, θ]],

(її) [θ*, θ+, Δ] = [θ*, β, [β, θ+, Δ]] und

(iii) [θ*, θ+, Σ] = [θ*, β, [β, θ+, Σ]].

Beweis: Seien θ TERM, Δ FORM, Σ SATZ, θ* GTERM, β PAR(TT(θ)
TT(Δ) TT(Σ)) und θ+ ATERM. Zu (i): Der Beweis wird mittels Induktion uber den
Termaufbau von θ gefuhrt. Sei θ
ATERM. Dann ist θ = θ+ oder θ θ+. Sei zunachst θ
= θ+. Dann ist [β, θ+, θ] = β und [θ*, θ+, θ] = θ*. Dann ist [θ*, θ+, θ] = θ* = [θ*, β, β] =
[θ*, β, [β, θ+, θ]]. Sei nun θ
θ+. Dann ist [β, θ+, θ] = θ und [θ*, θ+, θ] = θ. Wegen β
TT(θ) ist β θ und mithin θ = [θ*, β, θ]. Also [θ*, θ+, θ] = θ = [θ*, β, θ] = [θ*, β, [β, θ+,
θ]].

Gelte die Behauptung nun fur {θ0, ., θr-1} TERM und sei θ = rφ(θ0, ... θr-1)^l
FTERM. Wegen β TT(θ) gilt auch β TT(θi) fur alle i r. Dann gilt mit I.V. [θ*, θ+,
θ
i] = [θ*, β, [β, θ+, θi]] fur alle ir. Dann ist [θ*, θ+, rφ(θo, . W] = W*, θ+, θo],
., [θ*, θ+, θ
r])π = rφ([θ*, β, [β, θ+, θo]], ., [θ*, β, [β, θ+, θr]])π = [θ*, β, rφ([β, θ+,
θ
o], ., [β, θ+, θr])π] = [θ*, β, [β, θ+, rφ(θo, . θr)π ]].

Zu (ii): Der Beweis wird mittels Induktion uber den Formelaufbau von Δ gefuhrt. Sei Δ
=
rΦ(θo, . θr)π AFORM. Dann gilt β TT(θi) fur alle i r und [θ*, θ+, Δ] = [θ*, θ+,
rΦ(θo, . θr)π] = rΦ([θ*, θ+, θo], . [θ*, θ+, θr])π. Mit (i) gilt [θ*, θ+, θi] = [θ*, β, [β,
θ+, θ
i]] fur alle ir. Also [θ*, θ+, Δ] = rΦ([θ*, β, [β, θ+, θo]], ., [θ*, β, [β, θ+, θr]])π =
[θ*, β,
rΦ([β, θ+, θo], ., [β, θ+, θr])π = [θ*, β, [β, θ+, rΦ(θo, . θr)π ]] = [θ*, β, [β, θ+,
Δ]].

Gelte die Behauptung nun fur Δo, Δ1 FORM. Sei zunachst Δ = roΓ JFORM.
Dann gilt β
TT(Δo) und [θ*, θ+, Δ] = [θ*, θ+, r-Δoπ ] = r-[θ*, θ+, Δo]π. Mit I.V. gilt
[θ*, θ+, Δ
o] = [θ*, β, [β, θ+, Δo]]. Also [θ*, θ+, Δ] = r-[θ*, β, [β, θ+, Δo]]π = [θ*, β, [β, θ+,
rΔo^l ]] = [θ*, β, [β, θ+, Δ]]. Sei Δ = ro ψ Δ1)^l JFORM. Der Fall verlauft analog zum
Negatorfall.



More intriguing information

1. Labour Market Institutions and the Personal Distribution of Income in the OECD
2. Qualifying Recital: Lisa Carol Hardaway, flute
3. Demographic Features, Beliefs And Socio-Psychological Impact Of Acne Vulgaris Among Its Sufferers In Two Towns In Nigeria
4. The name is absent
5. XML PUBLISHING SOLUTIONS FOR A COMPANY
6. Migration and Technological Change in Rural Households: Complements or Substitutes?
7. The name is absent
8. The name is absent
9. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
10. Connectionism, Analogicity and Mental Content