44 1 Zum grammatischen Rahmen
., θ*k-ι>, <ξo, ., ξk-ι>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, ʌo]ɔ] =
r∏ζ[<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, Δo,∣' = [<θ*o, ., θ*k}, <ξo, ., ξk>, ∙∏ζΔ I = [<θ*0, .,
θ*k}, <ξo, ., ξk>, Δ].
Angenommen ξ ≠ ζ fur alle i < k+1. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-ι), <ξo, ., ξk-ι>, Δ]]
= [θ*k, ξk, [<θ*o, ., θ*k-ι>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k-ι>, <ξo, .,
ξk-ι>, Δ ] ] = r∏ζ[θ*k, ξk, [<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, Δ H . Mit I.V. gilt [θ*k, ξk, [<θ*o,
., θ*k-ι>, <ξo, ., ξk-ι>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*k-1>, <ξo, ., ξk-1>, Δ]] = r∏ζ[<θ*o, ., θ*k>, <ξo, ., ξk>, Δ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>,
r∏ζΔoπ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. ■
Theorem 1-29. Mehrfache Substitution von geschlossenen Termen fur paarweise verschiedene
Variablen in Termen und Formeln (b)
Wenn k ∈ N∖{o}, {θ*o, ., θ*k} ⊆ GTERM und {ξo, ., ξ⅛} ⊆ VAR, wobei ξi ≠ ξ∙ fur alle i, j
< k+1 mit i ≠ j, dann:
(i) Wenn θ ∈ TERM, dann
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*ft>, <ξo, ., ξfc>, θ], und
(ii) Wenn Δ ∈ FORM, dann
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, Δ]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ].
Beweis: Seien k ∈ N\{o}, {θ*o, ., θ*k} ⊆ GTERM und {ξo, ., ξk} ⊆ VAR, wobei ξi ≠
ξj fur alle i, j < k+1 mit i ≠ j. Zu (i): Sei θ ∈ TERM. Der Beweis wird mittels Induktion
uber k gefuhrt. Sei k = 1. Dann ist mit Theorem 1-25-(i) und Theorem 1-28-(i) [θ*o, ξo,
[θ*1, ξ1, θ]] = [θ*1, ξ1, [θ*o, ξo, θ]] = [<θ*o, θ*1>, <ξo, ξ1>, θ]. Sei nun 1 < k. Durch Anwen-
dung von I.V., Theorem 1-25-(i), I.V., Theorem 1-28-(i), I.V. und Theorem 1-28-(i) in
dieser Reihenfolge ergibt sich: [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*k-
2>, <ξo, ., ξk-2>, [θ*k-1, ξk-1, [θ*k, ξk, θ]]] = [<θ*o, ., θ*k-2>, <ξo, ., ξk-2>, [θ*k, ξk, [θ*k-1, ξk-1,
θ]]] = [<θ*o, ., θ*k-2, θ*k>, <ξo, ., ξk-2, ξk>, [θ*k-1, ξk-1, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-2>, <ξo,
., ξk-2>, [θ*k-1, ξk-1, θ]]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [<θ*o, ., θ*k>, <ξo,
., ξk>, θ].
(ii) folgt auf analogem Wege aus Theorem 1-25-(ii) und Theorem 1-28-(ii). ■
More intriguing information
1. Commuting in multinodal urban systems: An empirical comparison of three alternative models2. The name is absent
3. The name is absent
4. Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates
5. The name is absent
6. The value-added of primary schools: what is it really measuring?
7. The name is absent
8. The name is absent
9. The name is absent
10. Large Scale Studies in den deutschen Sozialwissenschaften:Stand und Perspektiven. Bericht über einen Workshop der Deutschen Forschungsgemeinschaft