Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



44    1 Zum grammatischen Rahmen

., θ*k>, <ξo, ., ξk>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k>, <ξo, ., ξk>, ʌo]ɔ] =
r∏ζ[<θ*o, ., θ*k>, <ξo, ., ξk>, Δo,' = [<θ*o, ., θ*k}, <ξo, ., ξk>, ∏ζΔ I = [<θ*0, .,
θ*k}, <ξo, ., ξk>, Δ].

Angenommen ξ ζ fur alle i k+1. Dann ist [θ*k, ξk, [<θ*o, ., θ*k), <ξo, ., ξk>, Δ]]
= [θ*
k, ξk, [<θ*o, ., θ*k>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k>, <ξo, .,
ξ
k>, Δ ] ] = r∏ζ[θ*k, ξk, [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ H . Mit I.V. gilt [θ*k, ξk, [<θ*o,
., θ*
k>, <ξo, ., ξk>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*
k-1>, <ξo, ., ξk-1>, Δ]] = r∏ζ[<θ*o, ., θ*k>, <ξo, ., ξk>, Δ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>,
r∏ζΔoπ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. ■

Theorem 1-29. Mehrfache Substitution von geschlossenen Termen fur paarweise verschiedene
Variablen in Termen und Formeln (b)

Wenn k N{o}, {θ*o, ., θ*k} GTERM und {ξo, ., ξ} VAR, wobei ξi ≠ ξ∙ fur alle i, j
< k+1 mit i j, dann:

(i) Wenn θ TERM, dann

[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*ft>, <ξo, ., ξfc>, θ], und
(ii) Wenn Δ
FORM, dann

[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, Δ]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ].

Beweis: Seien k N\{o}, {θ*o, ., θ*k} GTERM und {ξo, ., ξk} VAR, wobei ξi
ξ
j fur alle i, j k+1 mit i j. Zu (i): Sei θ TERM. Der Beweis wird mittels Induktion
uber
k gefuhrt. Sei k = 1. Dann ist mit Theorem 1-25-(i) und Theorem 1-28-(i) [θ*o, ξo,
[θ*
1, ξ1, θ]] = [θ*1, ξ1, [θ*o, ξo, θ]] = [<θ*o, θ*1>, <ξo, ξ1>, θ]. Sei nun 1 < k. Durch Anwen-
dung von I.V., Theorem 1-25-(i), I.V., Theorem 1-28-(i), I.V. und Theorem 1-28-(i) in
dieser Reihenfolge ergibt sich: [
<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*k-
2
>, <ξo, ., ξk-2>, [θ*k-1, ξk-1, [θ*k, ξk, θ]]] = [<θ*o, ., θ*k-2>, <ξo, ., ξk-2>, [θ*k, ξk, [θ*k-1, ξk-1,
θ]]] = [
<θ*o, ., θ*k-2, θ*k>, <ξo, ., ξk-2, ξk>, [θ*k-1, ξk-1, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-2>, <ξo,
., ξ
k-2>, [θ*k-1, ξk-1, θ]]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [<θ*o, ., θ*k>, <ξo,
., ξ
k>, θ].

(ii) folgt auf analogem Wege aus Theorem 1-25-(ii) und Theorem 1-28-(ii). ■



More intriguing information

1. BEN CHOI & YANBING CHEN
2. Lending to Agribusinesses in Zambia
3. A THEORETICAL FRAMEWORK FOR EVALUATING SOCIAL WELFARE EFFECTS OF NEW AGRICULTURAL TECHNOLOGY
4. Constructing the Phylomemetic Tree Case of Study: Indonesian Tradition-Inspired Buildings
5. A Bayesian approach to analyze regional elasticities
6. 101 Proposals to reform the Stability and Growth Pact. Why so many? A Survey
7. Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates
8. The name is absent
9. The name is absent
10. The Effects of Attendance on Academic Performance: Panel Data Evidence for Introductory Microeconomics