44 1 Zum grammatischen Rahmen
., θ*k-ι>, <ξo, ., ξk-ι>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, ʌo]ɔ] =
r∏ζ[<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, Δo,∣' = [<θ*o, ., θ*k}, <ξo, ., ξk>, ∙∏ζΔ I = [<θ*0, .,
θ*k}, <ξo, ., ξk>, Δ].
Angenommen ξ ≠ ζ fur alle i < k+1. Dann ist [θ*k, ξk, [<θ*o, ., θ*k-ι), <ξo, ., ξk-ι>, Δ]]
= [θ*k, ξk, [<θ*o, ., θ*k-ι>, <ξo, ., ξk-1>, r∏ζΔoπ]] = [θ*k, ξk, r∏ζ[<θ*o, ., θ*k-ι>, <ξo, .,
ξk-ι>, Δ ] ] = r∏ζ[θ*k, ξk, [<θ*o, ., θ*k-ι>, <ξo, ., ξk-ι>, Δ H . Mit I.V. gilt [θ*k, ξk, [<θ*o,
., θ*k-ι>, <ξo, ., ξk-ι>, Δo]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δo]. Also [θ*k, ξk, [<θ*o, .,
θ*k-1>, <ξo, ., ξk-1>, Δ]] = r∏ζ[<θ*o, ., θ*k>, <ξo, ., ξk>, Δ ] = [<θ*o, ., θ*k>, <ξo, ., ξk>,
r∏ζΔoπ] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ]. ■
Theorem 1-29. Mehrfache Substitution von geschlossenen Termen fur paarweise verschiedene
Variablen in Termen und Formeln (b)
Wenn k ∈ N∖{o}, {θ*o, ., θ*k} ⊆ GTERM und {ξo, ., ξ⅛} ⊆ VAR, wobei ξi ≠ ξ∙ fur alle i, j
< k+1 mit i ≠ j, dann:
(i) Wenn θ ∈ TERM, dann
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*ft>, <ξo, ., ξfc>, θ], und
(ii) Wenn Δ ∈ FORM, dann
[<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, Δ]] = [<θ*o, ., θ*k>, <ξo, ., ξk>, Δ].
Beweis: Seien k ∈ N\{o}, {θ*o, ., θ*k} ⊆ GTERM und {ξo, ., ξk} ⊆ VAR, wobei ξi ≠
ξj fur alle i, j < k+1 mit i ≠ j. Zu (i): Sei θ ∈ TERM. Der Beweis wird mittels Induktion
uber k gefuhrt. Sei k = 1. Dann ist mit Theorem 1-25-(i) und Theorem 1-28-(i) [θ*o, ξo,
[θ*1, ξ1, θ]] = [θ*1, ξ1, [θ*o, ξo, θ]] = [<θ*o, θ*1>, <ξo, ξ1>, θ]. Sei nun 1 < k. Durch Anwen-
dung von I.V., Theorem 1-25-(i), I.V., Theorem 1-28-(i), I.V. und Theorem 1-28-(i) in
dieser Reihenfolge ergibt sich: [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, [θ*k, ξk, θ]] = [<θ*o, ., θ*k-
2>, <ξo, ., ξk-2>, [θ*k-1, ξk-1, [θ*k, ξk, θ]]] = [<θ*o, ., θ*k-2>, <ξo, ., ξk-2>, [θ*k, ξk, [θ*k-1, ξk-1,
θ]]] = [<θ*o, ., θ*k-2, θ*k>, <ξo, ., ξk-2, ξk>, [θ*k-1, ξk-1, θ]] = [θ*k, ξk, [<θ*o, ., θ*k-2>, <ξo,
., ξk-2>, [θ*k-1, ξk-1, θ]]] = [θ*k, ξk, [<θ*o, ., θ*k-1>, <ξo, ., ξk-1>, θ]] = [<θ*o, ., θ*k>, <ξo,
., ξk>, θ].
(ii) folgt auf analogem Wege aus Theorem 1-25-(ii) und Theorem 1-28-(ii). ■
More intriguing information
1. Exchange Rate Uncertainty and Trade Growth - A Comparison of Linear and Nonlinear (Forecasting) Models2. A Note on Costly Sequential Search and Oligopoly Pricing (new title: Truly Costly Sequential Search and Oligopolistic Pricing,)
3. The English Examining Boards: Their route from independence to government outsourcing agencies
4. The name is absent
5. GENE EXPRESSION AND ITS DISCONTENTS Developmental disorders as dysfunctions of epigenetic cognition
6. Handling the measurement error problem by means of panel data: Moment methods applied on firm data
7. Short- and long-term experience in pulmonary vein segmental ostial ablation for paroxysmal atrial fibrillation*
8. The name is absent
9. Has Competition in the Japanese Banking Sector Improved?
10. The name is absent