13
Muodostetaan sitten seuraava palkkasopimusten merkitysta kuvaava aggregatiivinen
malli, joka koostuu kolmesta yhtalosta:
wsop = p + prod + C(1)*TUPO (10a)
w = wsop + C(2)*(wsop-p-prod)-1 (10b)
p = C(3)*(w+sotu-prod) + (1-C(3))*pm , (10c)
jossa wsop on sopimuspalkkaindeksin nousu, %, p on BKT:n hintaindeksin nousu (%),
prod on tyon tuottavuuden nousu (koko kansantaloudessa eli BKT/tyotunti, %) ja TUPO
on tyomarkkinasopimusten Iuonnetta kuvaava, ylla selostettu mittari. Toisessa yhtalossa
w on palkkatason (ansiotasoindeksin) nousu koko taloudessa (%) ja alaindeksilla -1 on
merkitty viivastettya arvoa seka kolmannessa yhtalossa sotu on tyonantajan sosiaalitur-
vamaksujen kohtaannon muutos = (sosiaaliturvamaksujen suhde palkkasummaan, %, ja
tasta laskettu muutos), ja pm on tuontihintojen muutos (%). Termit C(1), C(2) ja C(3)
ovat tuntemattomia parametreja, jotka estimoidaan tilastoaineistosta.
Yhtalo (10a) kuvaa sopimuspalkkojen muodostumista. Niiden nousun oletetaan kiinnit-
tyvan kansantalouden palkannousun normiin, eli tuottavuuden ja inflaation summaan,
seka riippuvan lisaksi sopimusmuodon luonteesta, eli siita, onko se keskitetty tupo vai
liittokohtainen. Seuraavassa emme tee eroa sen suhteen, etta tupojakin voi olla kustan-
nusvaikutukseltaan erilaisia. Lahtokohta on, etta liittokohtainen ratkaisu sopimuspal-
koista kiinnittyy kansantalouden palkannousun normiin (jolloin tupo-indeksi saa arvon
nolla) ja keskitetty tupo merkitsee hillintaa tasta (kerroin C(1) < 0). Toinen yhtalo kuvaa
sita, etta ansiotaso nousee suoraan sopimuskorotuksella, mutta taman lisaksi korjauste-
kijalla, joka kuvaa sita, etta jos palkankorotukset sovitaan palkkanormia matalammiksi,
niin kaytannossa palkat liukuvat niin, etta ainakin osa sopimuskorotuksien maltillisuu-
desta eliminoituu tyomarkkinavoimien seurauksena. Nain ollen oletetaan, etta kerroin
C(2) on valilla [-1,0]. Kolmas yhtalo on tavanomainen inflaation muodostuminen kus-
tannuspaineen kautta. Kun yhtalot ratkaistaan selitettavien muuttujien w-p ja p suhteen,
saadaan seuraava ratkaisu pitkalla ajalla
w - p = prod + C(1)*(1+C(2))*TUPO
(11a)
(11b)
C(3) C(3) *C(1)(1+ C(2))
p = pm +--Sotu sotu +——--— ---*TU * TUPO
1- C(3) 1-C(3)
Taman mukaan saadaan pitkan ajan vaikutus tuposta reaalipalkkoihin, jos kerroin C(1)
poikkeaa nollasta ja kerroin C(2) poikkeaa -1:sta. Malli estimoitiin kaksivaiheisella
pienimman neliosumman keinoilla (2 PNS) kayttaen instrumentteina tuottavuutta, tuon-
tihintojen muutosta, viivastettya inflaatiota ja viivastettya palkannousua ja tupo-
indikaattoria. Estimointitulos vuosiaineistolla vuosilta 1976-99 on seuraava:
Taulukko 1. Mallin estimointitulos vuosien 1976-99 aineistosta
Parametri |
Estimaatti |
t-arvo |
C(1) |
____________-3.97____________ |
__________-4.86__________ |
C(2)____________________ |
__________-0.50__________ |
__________-7.39__________ |
C(3)____________________ |
____________0.76___________ |
_____________5.61____________ |