Kaavassa (L2.11) on kâytetty apuna normaalijakauman tiheysfunktiota ja yhtâiossâ (L2.8)
olleen maksimointifunktion termit on kerrottu diskonttotekijâllâ exp(-rT). Yhtalon (L2,11)
viimeinen rivi voidaan vielà kehittâa Seuraavasti
(L2.12) Sexp(-rT) f —r~ exp(--~)dx -
,i 2 σ∖2πT 2cτ7^
Л. 2
Sexp(-rT) Probfx > -log(S∕K) -(r-σ2∕2)T] =
ς r TAD M x ∣og(S∕∕0 + (r-σ2∕2)7'
Sexp(-rT) Probf--7= <-----------τ=---------]=
σ√ 1 σd l
Sexp(-rT)N[- log(5∕^) + (r~σ3∕2)71 ]
σjτ
Merkinta N[.] viittaa Standardoituun normaalijakauman kertymâfunktioon. Myos toinen rivi
yhtàlôstâ (L2.11) voidaan kehittâa hiukan toisenlaiseen muotoon
1 X * ɔ
(l2∙13)s ∫ —≡=veχP(-τ-⅛--^ + x)a⅛ =
c j , σ√2τr7 2σ"/ 2
6 σ
" ɪog(- )-('ʃ-


........-,r. (x~
2σ~T
- 2xσ2 T + σ4 T2 )]√x =

1 r (x-σ2Γ)21j
—7= exp [.. Их
σ-χ∣2πT 2σ2T
More intriguing information
1. Distortions in a multi-level co-financing system: the case of the agri-environmental programme of Saxony-Anhalt2. The name is absent
3. The name is absent
4. The duration of fixed exchange rate regimes
5. Can genetic algorithms explain experimental anomalies? An application to common property resources
6. Automatic Dream Sentiment Analysis
7. Types of Cost in Inductive Concept Learning
8. Testing Panel Data Regression Models with Spatial Error Correlation
9. Work Rich, Time Poor? Time-Use of Women and Men in Ireland
10. DIVERSITY OF RURAL PLACES - TEXAS