Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



6.1 Korrektheit des Redehandlungskalkuls 243

(KBF, AEF): Sei M ∈ KBF(MTDom(M)-1). Nach Definition 3-5 gibt es dann Δ
GFORM, so dass rΔ K(M)^l VER(MTDom(M)-1) oder rK() Δ
VER(MTDom(M)-1). Wegen rΔ K(M)^l VER(MTDom(M)-1) oder K(M) ^l
VER(MTDom(M)-1) gibt es j Dom(M)-1, so dass rΔ K(M)^l oder K(M) ∆^l in
MTDom(M)-1 bei j verfugbar ist. Dann ist K(MTj+1) = K(M)^l oder K(MTj+1) =
K(M) ∆^l. Dann gilt VAN(MTj+1) = rΔ K(M)^l oder VAN(MTj+1) = rK(Λ) ∆^l.
Mit Theorem 3-29-(iv) gilt dann VAN(
MTj+1) VAN(MTDom(M)-1) = VAN(M) und
damit mit Theorem 5-13 auch VAN(
M) = ∣K(M)^l oder VAN(M) = rK(M) Δη.
Theorem 5-18 ergibt in beiden Fallen VAN(
M) = K(M). Analog zeigt man fur AEF mit
Theorem 5-22, dass VAN(
M) = K(M).

(ABF): Sei M ∈ ABF(Dom(M)-1). Nach Definition 3-9 gibt es dann Β, Δ GFORM
so dass
B V ∆^l, B K(M)^l, rK(M)^l VER(Dom(M)-1). Dann gibt es j, k, l
Dom(M)-1, so dass rB v ∆^l in Dom(M)-1 bei j und rB K(M)^l in Dom(M)-1 bei k
und K(M)^l in Dom(M)-1 bei l verfugbar ist. Dann ist K(MTj+1) = B v ∆^l und
K(
MΓk+1) = B K(M)^l und K(Mtl+1) = K(M)^l. Dann gilt VAN(MTj+1) = ∣B v
∆^l und VAN(MΓk+1) = ∣B K(M)^l und VAN(MTl+1) = ∣K(M)^l. Mit Theorem
3-29-(iv) gilt sodann VAN(
MΓj+1) VAN(Dom(M)-1) und VAN(MΓk+1)
VAN(Dom(M)-1) und VAN(MTl+1) (Mi□om(M)-1) und damit VAN(MTj+1)
VAN(M) und VAN(MΓk+1) VAN(M) und VAN(MTl+1) VAN(M). Damit gilt mit
Theorem 5-13 auch VAN(
M) = ∣B v ∆^l und VAN(M) = ∣B K(M)^l und VAN(M) =
K(M)^l. Theorem 5-23 ergibt VAN(M) = K(M).

(NBF, UBF, PEF): Sei M ∈ NBF(Dom(M)-1). Nach Definition 3-11 ist dann
r—i—ιK(M)^l VER(Dom(M)-1). Sodann gibt es j ∈ Dom(M)-1, so dass - K(M)^l in
MTDom(M)-1 bei j verfugbar ist. Dann ist K(MTj+1) = ∣--K(M)^l. Dann gilt
VAN(
MTj+1) = Г-—K(M)π. Mit Theorem 3-29-(iv) gilt sodann VAN(MTj+1)
VAN(MTDom(M)-1) = VAN(M) und daher mit Theorem 5-13 auch VAN(M) =
Г-—
K(M)π. Theorem 5-26 ergibt VAN(M) = K(M). Analog zeigt man fur UBF mit
Theorem 5-28 und fur PEF mit Theorem 5-29, dass dann auch jeweils VAN(
M) = K(M).

(UEF): Sei M ∈ UEF(MTDom(M)-1). Nach Definition 3-12 gibt es dann β PAR, ξ
VAR und ∆ FORM, wobei FV(∆) {ξ}, so dass [β, ξ, ∆] VER(MTDom(M)-1) und β
TTFM({∆} и VAN(MTDom(M)-1)) und K(M) = ∣Λξ∆π. Dann gibt es j ∈ Dom(M)-1,
so dass [β, ξ, ∆] in
MTDom(M)-1 bei j verfugbar ist. Dann ist K(MTj+1) = [β, ξ, ∆]. Dann
gilt VAN(
MTj+1) = [β, ξ, ∆]. Mit Theorem 3-29-(iv) gilt sodann VAN(MTj+1)



More intriguing information

1. Types of Tax Concessions for Promoting Investment in Free Economic and Trade Areas
2. Empirically Analyzing the Impacts of U.S. Export Credit Programs on U.S. Agricultural Export Competitiveness
3. The growing importance of risk in financial regulation
4. Restricted Export Flexibility and Risk Management with Options and Futures
5. AN EXPLORATION OF THE NEED FOR AND COST OF SELECTED TRADE FACILITATION MEASURES IN ASIA AND THE PACIFIC IN THE CONTEXT OF THE WTO NEGOTIATIONS
6. Washington Irving and the Knickerbocker Group
7. The name is absent
8. BARRIERS TO EFFICIENCY AND THE PRIVATIZATION OF TOWNSHIP-VILLAGE ENTERPRISES
9. The Modified- Classroom ObservationScheduletoMeasureIntenticnaCommunication( M-COSMIC): EvaluationofReliabilityandValidity
10. An alternative way to model merit good arguments