5th and 8th grade pupils’ and teachers’ perceptions of the relationships between teaching methods, classroom ethos, and positive affective attitudes towards learning mathematics in Japan



Table 7.1.4: Mean of frequency of deployment of teaching methods and affective attitude
promoted by teaching methods between pupils with higher and lower levels of mathematics self-
concept at 8th grade _______________________________________________________________

Enjoyment____________

Motivation______________

Senseofsecurity

Sense of progress

Deployment

N

M___

SD

N

M

SD

N____

M___

SD

N____

M___

SD

N____

M___

SD

PW

H

1011

2.85

1.38

1009

2.68

1.30

1007

2.57

1.21

1007

2.78

1.26

1006

1.41

.61

_L__

1083

2.80

1.35

1079

2.64

1.26

1074

2.50

1.20

1076

2.73

1.25

1074

1.42

.60

t=.921, df=2092,
p>.05__________________

t=.714, df=2086,
p>.05__________________

t=1.278, df=2079,
p>.05    _______

t=.946, df=2081,
p>.05 ____ _____

t= -.140, df=2078, p>.05

UC

H

1011

3.03

1.51

1008

2.84

1.38

1006

2.53

1.25

1005

2.50

1.18

1007

1.40

.71

_L__

1082

3.07

1.52

1078

2.95

1.41

1072

2.69

1.30

1073

2.65

1.25

1075

1.29

.63

t=.696, df=2091,
p>.05      _______

t=-1.890, df=2084,
p>.05

t= -2.926, df=2076,
p<.01

t= -2.905, df=2076, p<.01

t=3.850, df=2015.238,
p<.01

RT

H

1010

2.70

1.20

1006

2.55

1.20

1008

2.92

1.25

1007

3.28

1.22

1000

3.10

1.19

_L__

1082

2.54

1.16

1076

2.38

1.14

1073

2.69

1.22

1074

3.05

1.26

1074

2.97

1.12

t=3.183, df=2090,
p<.01______________

t=3.309, df=2080,
p<.01________ ______

t=4.403, df=2079,
p<.01

t=4.180, df=2079,
p<.01           _____

t=2.546, df=2036.842,

p<.05    ______ ____

TE

H

1011

3.55

1.15

1009

3.36

1.17

1007

3.60

1.17

1006

3.97

1.03

999

4.10

.92

_L__

1083

3.21

1.29

1078

3.05

1.25

1074

3.29

1.25

1076

3.70

1.14

1074

3.91

1.08

t=6.317, df=2087.100,
p<.01__________________

t=5.799, df=2085,
p<.01__________________

t=5.843, df=2078.882,

p<.01__________________

t=5.820, df=2077.106,

p<.01__________________

t=4.276, df=2055.703,

p<.01__________________

IW

H

1011

3.47

1.19

1008

3.60

1.21

1007

3.83

1.16

1007

3.99

1.05

999

3.94

.86

_L___

1083

3.01

1.30

1079

3.08

1.30

1074

3.35

1.32

1076

3.62

1.23

1074

3.76

.93

t=8.500, df=2092,

p<.01____ ______

t=9.459, df=2085,
p<.01 ______ _______

t=8.873, df=2070.722,

p<.01__

t=7.482, df=2062.080,

p<-01__________________

t=4.472, df=2070.994,

p<.01__________________

IH

^H^~

1011

3.01

1.27

1009

3.32

1.31

1006

3.57

1.29

1006

4.07

1.10

1003

3.21

1.09

L___

1083

2.95

1.35

1079

3.21

1.39

1074

3.45

1.36

1076

3.99

1.18

1070

3.02

1.09

t=1.141, df=2091.837,
p>.05

t=1.924, df=2085.978,
p>.05 ____

t=2.068, df=2077.860,
p<.05     ______

t=1.598, df=2079.934,

p>.05__

t=3.889, df=2062.904,

p<.01__________________

WD

H

1011

2.60

1.22

1009

2.50

1.18

1006

2.45

1.12

1007

2.54

1.16

997

1.90

.96

L___

1083

2.50

1.21

1079

2.44

1,19

1074

2.38

1.15

1076

2.50

1,14

1069

1.84

.92

t=1.719, df=2092,
p>.05

t=1.029, df=2086,
p>.05

t=1.406, df=2078,
p>.05       ____

t=.810, df=2081,
p>.05__

t=1.602, df=2064,
p>.05__________________

GD

H

1011

2.75

1.27

1008

2.67

1.26

1006

2.60

1.19

1007

2.65

1.17

996

1.54

.78

L___

1083

2.75

1.34

1079

2.68

1.30

1072

2.56

1.21

1075

2.59

1.20

1067

1.51

.76

t=.004, df=2092,
p>.05__________________

t= -.154, df=2085,
p>.05__________________

t=.751, df=2076,
p>.05__________________

t=1.054, df=2080,
p>.05__________________

t=.784, df=2061,
p>.05__________________



More intriguing information

1. Optimal Tax Policy when Firms are Internationally Mobile
2. ALTERNATIVE TRADE POLICIES
3. The name is absent
4. PERFORMANCE PREMISES FOR HUMAN RESOURCES FROM PUBLIC HEALTH ORGANIZATIONS IN ROMANIA
5. The name is absent
6. The name is absent
7. Economie de l’entrepreneur faits et théories (The economics of entrepreneur facts and theories)
8. Gender and headship in the twenty-first century
9. Public Debt Management in Brazil
10. Artificial neural networks as models of stimulus control*