3.1.1. О возможности уменьшения величины разрыва
В случае (3б), когда часть распределения оценки вероятности,
выходящая за границы шкалы вероятностей, полностью или частично
накапливается на границе, величина разрыва уменьшается. При полном
накоплении (3бб) величина разрыва уменьшается в два раза.
В случае (2), когда часть распределения, выходящая за границы шкалы
вероятностей, аннулируется как непосредственно, так и при общей
нормировке (2б), величина разрыва также уменьшается в два раза, но за счет
нормировки.
3.2. Процедура учета неопределенности
Примем за максимальное приближение оценки вероятности к границе
шкалы вероятностей такое приближение, при котором, при равной нулю
дисперсии, математическое ожидание оценки вероятности точно
совместилось бы с этой границей. Такая ситуация реальна, напр., для случаев,
когда уровень неопределенности был настолько мал, что дисперсию можно
было считать равной нулю, но затем неопределенность повысилась (напр.
появились или увеличились шумы), приведя к увеличению дисперсии.
В рамках этой процедуры, величина разрыва будет равна величине
математического ожидания М1/2 оценки вероятности для половины
распределения (в одну или в другую сторону от математического ожидания
полного распределения). При этом (см. п. 3.1.):
Если (1) распределение будет:
(1а) деформироваться или
(1б) отражаться от границы, то математическое ожидание М1/2
увеличится.
Если (2) распределение будет оставаться неизменным, то:
(2а) математическое ожидание М1/2 не изменится;
(2б) математическое ожидание М1/2 уменьшится.
Максимальное уменьшение - в 2 раза (см. п. 3.1.1.).
Если (3) распределение будет (3а) деформироваться к границе или (3б)
частично или полностью накапливаться на границе, то математическое
ожидание М1/2 уменьшится. Максимальное уменьшение при
(3бб) - в 2 раза (см. п. 3.1.1.).
Для расчетов принято предположение о максимальном уменьшении
математического ожидания и величины разрыва, т.е. приняты случаи (2б) и
(3бб): распределение будет оставаться неизменным как в среднем случае, но
величина разрыва будет равна половине величины математического ожидания
М1/2.
Для расчетов принято предположение (также минимизирующее
величины разрыва) о том, что величины среднеквадратичных отклонений
много меньше единицы.
В рамках этой процедуры и предположений будет выполнен расчет
минимальных величин разрывов.
More intriguing information
1. Novelty and Reinforcement Learning in the Value System of Developmental Robots2. The Determinants of Individual Trade Policy Preferences: International Survey Evidence
3. A Theoretical Growth Model for Ireland
4. Word Sense Disambiguation by Web Mining for Word Co-occurrence Probabilities
5. TOWARDS THE ZERO ACCIDENT GOAL: ASSISTING THE FIRST OFFICER MONITOR AND CHALLENGE CAPTAIN ERRORS
6. Models of Cognition: Neurological possibility does not indicate neurological plausibility.
7. NATURAL RESOURCE SUPPLY CONSTRAINTS AND REGIONAL ECONOMIC ANALYSIS: A COMPUTABLE GENERAL EQUILIBRIUM APPROACH
8. Optimal Vehicle Size, Haulage Length, and the Structure of Transport Costs
9. The name is absent
10. Popular Conceptions of Nationhood in Old and New European