Ein pragmatisierter Kalkul des naturlichen Schlieβens nebst Metatheorie



4.2 Eigenschaften der deduktiven Konsequenzschaft 201

Theorem 2-61 gilt dann, dass fur alle k mit 2 ≤ k ≤ 6 gilt: ftkSEF(ftk-1) и NEF(ftk-1) и
PBF(ftk-1).

Hingegen ist erstens nach Definition 3-1 ft1 AF(ft) RGS{0} und mit Theorem
3-15 VERS(
ft1) = VERS(ft) и {(Dom(ft), rSei α = α)} und VANS(ft1) = VANS(ft) и
{(Dom(ft), rSei α = α)} und rv Β) л ((Α Γ) лΓ))∣ ∈ VER(ft) VER(ft1).
Also ist
zweitens nach Definition 3-5 ft2 KBF(ft1) RGS{0} und mit Theorem 3-25
VERS(
ft2) = VERS(ft1) и {(Dom(ft1), rAlso Α v Β)}. Damit gilt VANS(ft2) =
VANS(
ft1), rv Β) л ((Α Γ) лΓ))∣ ∈ VER(ft1) VER(ft2) und rΑ v Β∣ ∈
VER(ft2). Also ist drittens nach Definition 3-5 ft3 KBF(ft2) RGS{0} und mit
Theorem 3-25 VERS(
ft3) = VERS(ft2) и {(Dom(ft2), rAlso (Α Γ) лΓ))}.
Damit gilt VANS(
ft3) = VANS(ft2), rΑ v Β∣ ∈ VER(ft2) VER(ft3) und rΓ) л
Γ)^l VER(ft3). Also ist viertens nach Definition 3-5 ft4 KBF(ft3) RGS{0}
und mit Theorem 3-25 VERS(
ft4) = VERS(ft3) и {(Dom(ft3), rAlso Α Γ)}. Damit
gilt VANS(
ft4) = VANS(ft3), rΑ v Β, rΓ) лΓ)∣ ∈ VER(ft3) VER(ft4)
und
rΑ Γ VER(ft4). Also ist funftens nach Definition 3-5 ft5 KBF(ft4)
RGS{0} und mit Theorem 3-25 VERS(ft5) = VERS(ft4) и {(Dom(ft4), rAlso Β Γ1)}.
Damit gilt VANS(
ft5) = VANS(ft4), rΑ v Β, rΑ Γ VER(ft4) VER(ft5) und Ъ
Γ VER(ft5). SchlieBlich ist sechstens nach Definition 3-9 ft6 ABF(ft5)
RGS{0} und mit Theorem 3-25 VERS(ft6) = VERS(ft5) и {(Dom(ft5), rAlso Γ)}. Da-
mit gilt VANS(
ft6) = VANS(ft5) = VANS(ft) и {(Dom(ft), rSei α = α)}. Damit gilt
VAN(
ft6) = VAN(ft) и {rα = α} und es gilt Γ VER(ft6). Dann gibt es mit Theorem
4-7 ein
ft+ RGS{0}, so dass VAN(ft+) VAN(ft6){Γα = α} = (VAN(ft) и {⅛ =
α^l})
{rα = α} = VAN(ft){Γα = α} (X и Y и Z)X{rα = α} X и Y и Z und
K(
ft+) = Γ. Damit gilt dann nach Theorem 3-12 X и Y и Z H Γ.

Zu (x) (AB*): Sei X H га v Β^l und Y H Γ und Α Y und Z H Γ und Β Z. Dann gilt
mit (i):
Y{Α} H гаΒ^l und Z\{Β} H гв Α^l. Dann gilt mit (ix): X и (Y{Α}) и
(Z{Β}) H г.

Zu (xi) (NE): Sei X H Γ und Y H Г—Γ und Α X и Y. Ist Α = rΔ' ∧ —Δ'fur ein Δ'
GFORM, dann gilt mit Theorem 4-17 direkt: (X и Y){Α} H %(Δ' ∧ — Δ')= Г—Α.
Sei nun Α ≠
rΔ' л —Δ'fur alle Δ'. Mit (iii) ergibt sich zunachst: X и Y H T л -Γπ. So-
dann gilt wiederum mit Theorem 4-17:
X и Y H Г—л — Γ)und damit mit (iii): X и



More intriguing information

1. Flatliners: Ideology and Rational Learning in the Diffusion of the Flat Tax
2. Commitment devices, opportunity windows, and institution building in Central Asia
3. El Mercosur y la integración económica global
4. The name is absent
5. The name is absent
6. Solidaristic Wage Bargaining
7. Wirkung einer Feiertagsbereinigung des Länderfinanzausgleichs: eine empirische Analyse des deutschen Finanzausgleichs
8. The Works of the Right Honourable Edmund Burke
9. Expectation Formation and Endogenous Fluctuations in Aggregate Demand
10. Cross-Country Evidence on the Link between the Level of Infrastructure and Capital Inflows
11. Errors in recorded security prices and the turn-of-the year effect
12. Fiscal Insurance and Debt Management in OECD Economies
13. Der Einfluß der Direktdemokratie auf die Sozialpolitik
14. The name is absent
15. Centre for Longitudinal Studies
16. Constrained School Choice
17. Pricing American-style Derivatives under the Heston Model Dynamics: A Fast Fourier Transformation in the Geske–Johnson Scheme
18. Family, social security and social insurance: General remarks and the present discussion in Germany as a case study
19. Foreign Direct Investment and the Single Market
20. The name is absent